KicksDB API
GuideAPI ReferenceChangelog
GuideAPI ReferenceChangelog
Support
  1. Guide
  • Introduction
  • Authentication
  • Status codes
  • Markets and currencies
  • Rate Limiting
  • Real-time data
  • Filtering
  1. Guide

Filtering

Since v3.1.20 (2025-06-12) you can now write queries to filter the results. It's based on Meilisearch's query syntax, you can read the original documentation here.

Writing queries for StockX endpoints#

Currently, the StockX product model is structured as follows:
{
  "id": "uuid",
  "name": "string",
  "description": "string",
  "model": "string",
  "slug": "string",
  "brand": "string",
  "gender": "string",
  "product_type": "string",
  "category": "string",
  "secondary_category": "string",
  "categories": ["string"],
  "sku": "string",
  "rank": "number",
  "release_date": "string",
  "colorway": "string",
  "prices": {
    "currency_market": {
      // ^ Example: "USD_US", "EUR_FR"
      "size": "float"
      // ^ Example: 9.5 -- Value is the lowest price for this size
    }
  },
  "barcodes": ["string"]
}
This page will be updated whenever this structure changes. All fields are filterable, but only name, description, model, slug, brand and sku are searchable.

Examples#

1.
Get all products with a price lower than 100 USD for size 11:
prices.USD_US.11 < 100
You should exclude products with a price of 0 USD, which are not available for sale.
Example: prices.USD_US.11 > 0 AND prices.USD_US.11 < 100
2.
Get all products with a price higher than 50 USD for size 9.5:
prices.USD_US.9.5 > 50
3.
Get products matching barcodes:
barcodes IN ['193655590351', '884802676799']
4.
Get products matching a specific SKU:
sku = 'CQ2514-005'
5.
Complex queries with multiple operators:
(product_type = 'sneakers' OR category = 'Nike SB') AND (gender = 'men') AND (prices.EUR_FR.11 > 100 AND prices.EUR_FR.11 < 120)
6.
Get products matching a specific category:
categories IN ['accessories']
It's recommended to use IN filter with categories instead of product_type or category. This offer a more detailed filtering.
Read about all operators here.

Writing queries for Shopify endpoints#

Currently, the Shopify product model is structured as follows:
{
  "id": "string", // Generated by us, not the Shopify product ID
  "product_id": "number", // The Shopify product ID
  "title": "string",
  "description": "string",
  "slug": "string",
  "brand": "string",
  "product_type": "string",
  "sku": "string",
  "tags": ["string"],
  "prices": {
    "variant_title": "float" // variant_title -> variant price
  },
  "shop_name": "string",
  "barcodes": ["string"],
  "cursor": "number", // Used to paginate through the results
  "updated_at": "string",
  "published_at": "string"
}
This page will be updated whenever this structure changes. All fields are filterable, but only title, description, tags, slug, brand and sku are searchable.

Writing queries for GOAT endpoints#

Currently, the GOAT product model is structured as follows:
{
  "id": "int",
  "name": "string",
  "brand": "string",
  "description": "string",
  "slug": "string",
  "sku": "string",
  "colorway": "string",
  "release_date": "string", // Format: YYYYMMDD or YYYY
  "retail_prices": { "retail_price_cents_<currency>": "number" }, // Example: "retail_price_cents_usd": 10000
  "rank": "number",
  "product_type": "string",
  "category": "string",
  "model": "string",
  "season": "string",
  "prices": {
    "<currency>": { "<size>": "float" } // Example: "usd": { "9": 123.45 }
    // if price == 0, it means the product is not available for sale
  }
}
This page will be updated whenever this structure changes. All fields are filterable, but only name, description, slug, brand and sku are searchable.
Modified at 2025-08-18 21:41:50
Previous
Real-time data
Built with